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Abstract

The reason we never observe violations of the second law of thermo-

dynamics is in part a matter of statistics: When �1023 degrees of

freedom are involved, the odds are overwhelmingly stacked against

the possibility of seeing significant deviations away from the mean

behavior. As we turn our attention to smaller systems, however,

statistical fluctuations become more prominent. In recent years it

has become apparent that the fluctuations of systems far from ther-

mal equilibrium are not mere background noise, but satisfy strong,

useful, and unexpected properties. In particular, a proper accounting

of fluctuations allows us to rewrite familiar inequalities of macro-

scopic thermodynamics as equalities. This review describes some of

this progress, and argues that it has refined our understanding of

irreversibility and the second law.
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1. INTRODUCTION

On anyone’s list of the supreme achievements of nineteenth-century science, both Maxwell’s

equations and the second law of thermodynamics surely rank high. Yet whereas Maxwell’s

equations are widely viewed as done, dusted, and uncontroversial, the second law still provokes

lively arguments, long after Carnot published his Reflections on the Motive Power of Fire

(1824) and Clausius articulated the increase of entropy (1865). The puzzle at the core of the

second law is this: How can microscopic equations of motion that are symmetric with respect to

time reversal give rise to macroscopic behavior that clearly does not share this symmetry? Of

course, quite apart from questions related to the origin of time’s arrow, there is a nuts-and-bolts

aspect to the second law. Together with the first law, it provides a set of tools that are indis-

pensable in practical applications ranging from the design of power plants and refrigeration

systems to the analysis of chemical reactions.

The past few decades have seen growing interest in applying these laws and tools to individ-

ual microscopic systems, down to nanometer length scales. Much of this interest arises at the

intersection of biology, chemistry, and physics, where there has been tremendous progress in

uncovering the mechanochemical details of biomolecular processes (1). For example, it is

natural to think of the molecular complex f29—a motor protein that crams DNA into the

empty shell of a virus—as a nanoscale machine that generates torque by consuming free energy

(2). The development of ever more sophisticated experimental tools to grab, pull, and otherwise

bother individual molecules, and the widespread use of all-atom simulations to study the

dynamics and the thermodynamics of molecular systems, have also contributed to the growing

interest in the thermodynamics of small systems (3).

Because the rigid, prohibitive character of the second law emerges from the statistics of

huge numbers, we might expect it to be enforced somewhat more leniently in systems with

relatively few degrees of freedom. To illustrate this point, consider the familiar gas-and-piston

setup, in which the gas of N � 1023 molecules begins in a state of thermal equilibrium inside

a container enclosed by adiabatic walls. If the piston is rapidly pushed into the gas and then

pulled back to its initial location, there will be a net increase in the internal energy of the gas.

That is,

W>0, 1:

where W denotes the work performed by the agent that manipulates the piston. This inequality

is not mandated by the underlying dynamics: There certainly exist microscopically viable

N-particle trajectories for which W< 0. However, the probability to observe such trajectories

becomes fantastically small for large N. By contrast, for a gas of only a few particles, we would

not be surprised to observe—once in a rare while, perhaps—a negative value of work, although

we still expect Equation 1 to hold on average

hWi>0: 2:

The angular brackets here and below denote an average over many repetitions of this hypothet-

ical process, with the tiny sample of gas re-equilibrated prior to each repetition.

This example suggests the following perspective: As we apply the tools of thermodynamics

to ever-smaller systems, the second law becomes increasingly blurred. Inequalities such as

Equation 1 remain true on average, but statistical fluctuations around the average become ever

more important as fewer degrees of freedom come into play.

This picture is accurate, but incomplete. It encourages us to dismiss the fluctuations in

W as uninteresting noise that merely reflects poor statistics (small N). As it turns out, these
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fluctuations themselves satisfy rather strong, interesting, and useful laws. For example, Equa-

tion 2 can be replaced by the equality,

he�W=kBTi ¼ 1, 3:

where T is the temperature at which the gas is initially equilibrated, and kB is Boltzmann’s

constant. If we additionally assume that the piston is manipulated in a time-symmetric manner,

for example, pushed in at a constant speed and then pulled out at the same speed, then the

statistical distribution of work values r(W) satisfies the symmetry relation

rðþWÞ
rð�WÞ ¼ eW=kBT : 4:

The validity of these results depends neither on the number of molecules in the gas, nor (sur-

prisingly!) on the rate at which the process is performed.

I have used the gas and piston out of convenience and familiarity, but the predictions

illustrated by Equations 3 and 4—and expressed more generally by Equations 15 and 30

below—are not specific to this particular example. They apply to any system that is driven

away from equilibrium by the variation of mechanical parameters, under relatively standard

assumptions regarding the initial equilibrium state and the microscopic dynamics. Moreover,

they belong to a larger collection of recently derived theoretical predictions, which pertain to

fluctuations of work (4–9), entropy production (10–18), and other quantities (19, 20) in

systems far from thermal equilibrium. Although these predictions go by various names, both

descriptive and eponymous, the term “fluctuation theorems” has come to serve as a useful label

encompassing the entire collection of results. There is by now a large body of literature on

fluctuation theorems, including reviews and pedagogical treatments (3, 21–38).

In my view, these are not results that one might naturally have obtained by starting with a

solid understanding of macroscopic thermodynamics and extrapolating down to small system

size. Rather, they reveal genuinely new, nanoscale features of the second law. My aim in this

review is to elaborate on this assertion. Focusing on those fluctuation theorems that describe the

relationship between work and free energy—these are sometimes called nonequilibrium work

relations—I argue that they have refined our understanding of dissipation, hysteresis, and other

hallmarks of thermodynamic irreversibility. Most notably, when fluctuations are taken into

account, inequalities that are related to the second law (e.g., Equations 5, 24, 28, 35) can be

rewritten as equalities (Equations 15, 25, 30, 31). Among the take-home messages that emerge

from these developments are the following:

1. Equilibrium information is subtly encoded in the microscopic response of a system driven far

from equilibrium.

2. Surprising symmetries lurk beneath the strong hysteresis that characterizes irreversible

processes.

3. Physical measures of dissipation are related to information-theoretic measures of

time-asymmetry.

4. The ability of thermodynamics to set the direction of time’s arrow can be quantified.

Moreover, these results have practical applications in computational thermodynamics and in

the analysis of single-molecule manipulation experiments, as discussed briefly in Section 8.

Section 2 introduces definitions and notation, and specifies the framework that will serve as

a paradigm of a thermodynamic process. Sections 3–6 address the four points listed above,

respectively. Section 7 discusses how these results relate to fluctuation theorems for entropy

production. Finally, I conclude in Section 8.

www.annualreviews.org � Irreversibility and Thermodynamics at the Nanoscale 331

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
1.

2:
32

9-
35

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
L

au
sa

nn
e 

on
 0

3/
06

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



2. BACKGROUND AND SETUP

This section establishes the basic framework that will be considered, and introduces the defini-

tions and assumptions used in later sections.

2.1. Macroscopic Thermodynamics and the Clausius Inequality

Throughout this review, the following serves as a paradigm of a nonequilibrium thermo-

dynamic process.

Consider a finite, classical system of interest in contact with a thermal reservoir at temperature

T (for instance, a rubber band surrounded by air), and let l denote some externally controlled

parameter of the system (the length of the rubber band). I refer to l as a work parameter, because

by varying it we perform work on the system. The notation [l,T] specifies an equilibrium state of

the system. Now imagine that the system of interest is prepared in equilibrium with the reservoir,

at fixed l¼A; that is, in state [A,T]. Then from time t¼ 0 to t¼ t the system is perturbed, perhaps

violently, by varying the parameter with time, ending at a value l ¼ B. (The rubber band is

stretched rapidly.) Finally, from t¼ t to t¼ t� the work parameter is held fixed at l ¼ B, allowing

the system to re-equilibrate with the thermal reservoir and thus relax to the state [B,T].

In this manner, the system is made to evolve from one equilibrium state to another, but in the

interim it is generally driven away from equilibrium. The Clausius inequality of classical

thermodynamics then predicts that the external work performed on the system is no less than

the free-energy difference between the terminal states:

W � DF � FB,T � FA,T : 5:

Here Fl,T denotes the Helmholtz free energy of the state [l,T]. When the parameter is varied

slowly enough that the system remains in equilibrium with the reservoir at all times, then the

process is reversible and isothermal, and W ¼ DF.
Throughout most of this review, Equation 5 serves as the essential statement of the second

law of thermodynamics. Of course, not all thermodynamic processes fall within this paradigm,

nor is Equation 5 the broadest formulation of the Clausius inequality. However, because

complete generality can impede clarity, I focus on the class of processes described above. Most

of the results presented in the following sections can be extended to more general thermody-

namic processes—such as those involving multiple thermal reservoirs or nonequilibrium initial

states—as I briefly discuss in Section 7.

Three comments are now in order, before proceeding to the nanoscale:

1. As the system is driven away from equilibrium, its temperature may change or become ill-

defined. The variable T, however, always denotes the initial temperature of the system and

thermal reservoir.

2. No external work is performed on the system during the re-equilibration stage, t < t < t�,
as l is held fixed. Therefore Equation 5 remains valid if the process is considered to end

at t ¼ t—even if the system has not yet reached equilibrium with the reservoir!—provided

we agree to define DF to be a free-energy difference between the equilibrium states [A,T] and

[B,T]. In this sense the re-equilibration stage is somewhat superfluous.

3. Although in general it is presumed that the system remains in thermal contact with the

reservoir for 0 < t < t, the results discussed in this review are also valid if the system is

isolated from the reservoir during this interval. (This is not surprising, given that an isolated

system can be viewed as a limiting case of a system in contact with a reservoir, if we imagine

that the interaction between the two is so weak that the effects of thermal contact are

negligible over a time interval of duration t.)
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2.2. Microscopic Definitions of Work and Free Energy

Now let us scale down this paradigm to small systems, with an eye toward incorporating

statistical fluctuations. Consider a framework in which the system of interest and the thermal

reservoir are represented as a large collection of microscopic, classical degrees of freedom. The

work parameter l is an additional coordinate describing the position or orientation of a body—

or some other mechanical variable such as the location of a laser trap in a single-molecule

manipulation experiment (27)—that interacts with the system of interest, but is controlled by

an external agent. This framework is illustrated with a toy model in Figure 1. Here the system of

interest consists of the three particles represented as open circles, whose coordinates zi give

distances from the fixed wall. The work parameter is the fourth particle, depicted as a shaded

circle at a distance l from the wall.

Let the vector x denote a microscopic state of the system of interest, that is the configura-

tions and momenta of its microscopic degrees of freedom; let y similarly denote a microstate of

the thermal reservoir. The Hamiltonian for this collection of classical variables is assumed to

take the form

Hðx, y; lÞ ¼ Hðx; lÞ þHenvðyÞ þHintðx, yÞ, 6:

whereH (x; l) represents the energy of the system of interest—including its interaction with the

work parameter—Henv(y) is the energy of the thermal environment, andHint (x, y) is the energy

of interaction between system and environment. For the toy model in Figure 1, x ¼ (z1, z2, z3,

p1, p2, p3) and we assume

Hðx; lÞ ¼
X3
i¼1

p2i
2m

þ
X3
k¼0

uðzkþ1 � zkÞ, 7:

where u(�) is a pairwise interaction potential, z0 � 0 is the position of the wall, and z4 � l is the

work parameter.

Now imagine a process during which the external agent manipulates the work parameter

according to a protocol l(t). As the parameter is displaced by an amount dl, the change in the

value of H due to this displacement is

đW � dl
@H

@l
ðx; lÞ: 8:

1 2 1

z1

Position, λ

Fixed wall

3

Figure 1

Illustrative model. The numbered circles constitute a three-particle system of interest, with coordinates
(z1, z2, z3) giving the distance of each particle from the fixed wall, as shown for z1. The blue particle is the
work parameter, whose position l is manipulated externally. The springs represent particle-particle (or

particle-wall) interactions. The system of interest interacts with a thermal reservoir whose degrees of

freedom are not shown.

www.annualreviews.org � Irreversibility and Thermodynamics at the Nanoscale 333

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
1.

2:
32

9-
35

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
L

au
sa

nn
e 

on
 0

3/
06

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Because dl �@H / @l is the work required to displace the coordinate l against a force�@H / @l, we

interpret Equation 8 to be the work performed by the external agent in bringing about this small

displacement (39). Over the entire process, the work performed by the external agent is

W ¼
Z
đW ¼

Z t

0

dtl
: @H

@l
xðtÞ; lðtÞÞ,ð 9:

where the trajectory x(t) describes the evolution of the system of interest. This is the micro-

scopic definition of work that is used throughout this review. (For discussions and debates

related to this definition, see References 37, 39–48.)

Let us now focus on the free-energy differenceDF appearing in Equation 5. In statistical physics

an equilibrium state is represented by a probability distribution rather than by a single micro-

scopic state. If the interaction energy Hint in Equation 6 is sufficiently weak—as usually assumed

in textbook discussions—then this distribution is given by the Boltzmann-Gibbs formula,

peql,TðxÞ ¼
1

Zl,T
exp½�Hðx; lÞ=kBT	, 10:

where

Zl,T ¼
Z
dx exp½�Hðx; lÞ=kBT	 11:

is the classical partition function. If Hint is too large to be neglected, then the equilibrium

distribution takes the modified form

peql,T / expð�H�=kBTÞ , H�ðx; lÞ ¼ Hðx; lÞ þ fðx;TÞ, 12:

where f(x;T) is the free-energetic cost of inserting the system of interest into its thermal surround-

ings. For the purpose of this review, the distinction between Equations 10 and 12 is not terribly

relevant. I will use the more familiar Equation 10, which applies to the weak-coupling limit (small

Hint), with the understanding that all the results discussed below are equally valid in the case of

strong coupling, provided H is replaced by H�. (See Reference 49 for a more detailed discussion.)

The free energy associated with this equilibrium state is

Fl,T ¼ �kBT lnZl,T : 13:

With these elements in place, imagine a microscopic analog of the process described in

Section 2.1. The system of interest is prepared in equilibrium with the reservoir, at l ¼ A. From

t¼ 0 to t¼ t, the system evolves with time as the work parameter is varied from l(0)¼ A to l(t)¼
B. By considering infinitely many repetitions of this process, we arrive at a statistical ensemble of

realizations of the process, which can be pictured as a swarm of independently evolving trajecto-

ries, x1(t), x2(t),���. For each of these we can compute the work, W1, W2,��� (Equation 9). Letting

r(W) denote the distribution of these work values, it is reasonable to expect that Equation 5 in this

case becomes a statement about the mean of this distribution, namely

hWi �
Z
dW rðWÞW�DF: 14:

As suggested earlier, this inequality is correct, but it is not the entire story.

2.3. The Need to Model

Although the laws of macroscopic thermodynamics can be stated without reference to underly-

ing equations of motion, when we study how these laws might apply to a microscopic system
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away from equilibrium, we must typically specify the equations we use to model its evolution.

These equations represent approximations of physical reality, and the choice inevitably reflects

certain assumptions. Equation 6 suggests one approach: Treat the system and reservoir as an

isolated, classical system evolving in the full phase space (x,y) under a time-dependent Hamil-

tonian Hðx, y; lðtÞÞ. The results discussed in Sections 3–6 can all be obtained within this

framework. Alternatively, we can treat the reservoir implicitly, by writing down effective

equations of motion for just the system variables, x. Examples include Langevin dynamics, the

Metropolis algorithm, Nosé-Hoover dynamics and its variants, the Andersen thermostat, and

deterministic equations based on Gauss’s principle of least constraint (23, 34). As with the

Hamiltonian approach, the results discussed below can be derived for each of these model

dynamics. This suggests that the results themselves are rather robust: They do not depend

sensitively on how the microscopic dynamics are modeled.

In this review, full-blown derivations of fluctuation theorems and work relations are not

provided. However, in Sections 3 and 4, in addition to describing various work relations and

their connections to the second law, I sketch how several of them can be derived for the toy

system shown in Figure 1, in the physical context mentioned by the final comment in Section

2.1: The system is thermally isolated during the interval 0 < t < t. The aim here is to convey

some idea of the theoretical foundations of these results, without exploring the technical details

that accompany an explicit treatment of the reservoir (50).

3. EQUILIBRIUM INFORMATION FROM
NONEQUILIBRIUM FLUCTUATIONS

Thermodynamics accustoms us to the idea that irreversible processes are described by inequal-

ities, such as W � DF. One of the surprises of recent years is that if we pay attention

to fluctuations, then such relationships can be recast as equalities. In particular, the non-

equilibrium work relation (6, 7) states that

he�W=kBTi¼e�DF=kBT , 15:

where (as above) T is the initial temperature of the system and thermal reservoir, and angular

brackets denote an ensemble average over realizations of the process. This result has been

derived in various ways, using an assortment of equations of motion to model the microscopic

dynamics (6–9, 17, 18, 49–62), and has been confirmed experimentally (63–66). In the follow-

ing paragraph I sketch how it can be obtained for the toy model of Figure 1.

Imagine that after preparing the system in equilibrium at l ¼ A we disconnect it from the

thermal reservoir. Then from t¼ 0 to t¼ t the three-particle system of interest evolves under the

Hamiltonian H(x; l(t)) (Equation 7), as we displace the fourth particle from l ¼ A to B using a

protocol l(t). A realization of this process is described by a trajectory xt � x(t) obeying

Hamilton’s equations. Combining Equation 9 with the identity dH/dt ¼ @H / @t (see Reference

67, section 8–2), we getW ¼H(xt; B) �H(x0; A). We then evaluate the left side of Equation 15

by averaging over initial conditions, using Equation 10:

he�W=kBTi ¼
Z
dx0 p

eq
A,Tðx0Þe

�W=kBT

¼ 1

ZA,T

Z
dxt

@xt
@x0

����
����
�1

e�Hðxt ;BÞ=kBT ¼ ZB,T

ZA,T
:

16:
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On the second line, the variables of integration have been changed from initial conditions to

final conditions. By Liouville’s theorem, the associated Jacobian factor is unity, j@xt/@x0j¼1,

which brings us to the desired result, ZB,T=ZA,T ¼ e�DF=kBT (Equation 13).

This gist of the calculation can be extended to the more general case in which the system and

reservoir remain in contact during the interval 0 < t < t (6, 49). The steps are essentially the

ones in Equation 16, only carried out in the full phase space (x, y), and care must be taken if the

interaction energy Hint (x, y) is strong (49). For alternative derivations of Equation 15 in which

the presence of the reservoir is modeled implicitly, using non-Hamiltonian equations of motion,

see References 6–8, 17, 18, 32, 51–62.

Recall that the work performed during a reversible, isothermal process depends only on

the initial and final states,W ¼ DF � FB,T � FA,T , and not on the sequence of equilibrium states

that mark the journey from [A,T] to [B,T]. The nonequilibrium work relation extends this

statement to irreversible processes:

�kBT ln he�W=kBTi ¼ DF: 17:

That is, the value of the nonlinear average on the left depends only on equilibrium states [A,T]

and [B,T] (because these determine DF), and not on the intermediate, out-of-equilibrium states

visited by the system. This implies that we can determine an equilibrium free-energy difference

by observing a system driven away from equilibrium, provided we repeat the process many

times: The value of DF is to be found not in a single measurement of work, but in its statistical

fluctuations. The idea that far-from-equilibrium fluctuations encode useful equilibrium infor-

mation is further extended by Equations 25, 30, and 31 below, but before getting to those

results I briefly draw attention to a few points related to Equation 15.

First, Equation 15 is closely related, but not equivalent, to an earlier work relation derived

by Bochkov & Kuzovlev (4, 5, 68, 69), which can be written as

he�W0=kBTi ¼ 1: 18:

This result does not involve DF and uses a definition of work that differs from Equation 9.

References 32, 41, and 70 contain a more detailed discussion of the relationship between

Equations 15 and 18, as well as between Equations 25, 30, and their counterparts in References

4, 5, 68, and 69.

With minimal effort, we can use Equation 15 to obtain two inequalities that are closely

related to the second law of thermodynamics. Combining Equation 15 with Jensen’s inequality

(72), hexp xi � exphxi, we get

hWi�DF, 19:

as already anticipated (Equation 14). A stronger and less expected result follows almost as

immediately from Equation 15 (31):

P½W < DF � z	 �
Z DF�z

�1
dWrðWÞ



Z DF�z

�1
dWrðWÞeðDF�z�WÞ=kBT


 eðDF�zÞ=kBT
Z þ1

�1
dWrðWÞe�W=kBT

¼ e�z=kBT :

20:

Here, P is the probability to observe a value of work that falls below DF � z, where z is an

arbitrary positive value with units of energy. Equation 20 reveals that the left tail of the
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distribution r(W) becomes exponentially suppressed in the thermodynamically forbidden

region W < DF, a bit like the evanescent piece of a quantum-mechanical wave function in a

classically forbidden region. Thus, we have no reasonable hope to observe a value of work that

falls much more than a few kBT below DF. This is gratifyingly consistent with experience, which

teaches us that the second law is never violated on a macroscopic scale.

For sufficiently slow variation of the work parameter, the central limit theorem suggests that

r(W) is approximately Gaussian. In this case Equation 15 implies (6)

DF ¼ hWi � s2W
2kBT

, 21:

where s2W is the variance of the work distribution. This is the result that one expects from linear

response theory (72–75).

When Equation 15 is applied to processes involving the motion of perfectly hard walls or

other hard constraints, then interesting subtleties can arise that are related to the ordering of

limits (76, 77).

Because Equation 15 unequivocally implies that hWi� DF, it might at first glance appear

that this represents a microscopic, first-principles derivation of the second law, and thus clar-

ifies the microscopic origins of irreversibility. This is not the case, however. In all derivations of

Equation 15 and related work relations (e.g., Equations 25, 30, and 31), the arrow of time is

effectively inserted by hand. Specifically, a quite special statistical state (the Boltzmann-Gibbs

distribution, peq) is assumed to describe the system at a particular instant in time (t ¼ 0), and

attention is then focused on the system’s evolution at later times only (t > 0). If instead the

evolution of the system leading up to the equilibrium state at t ¼ 0 had been considered, then all

the inequalities associated with the second law would have been obtained, but with their signs

reversed. This emphasizes the importance of boundary conditions (in time), and touches on the

deep connection between irreversibility and causality (78–80).

Gibbs already recognized that if one accepts an initial equilibrium state given by peq / e�H=kBT,

then various statements of the second law follow from properties of Hamiltonian dynamics (see

Chapter XIII of Reference 81). Similar results can be obtained if the initial equilibrium state is

represented by any distribution that is a decreasing function of energy (82). Interestingly, however,

for a microcanonical initial distribution, inequalities related to the second law of thermodynamics

can be violated, at least for systems with one degree of freedom (83, 84).

Let us now return to the picture of our ensemble as a swarm of trajectories, x1ðtÞ,x2ðtÞ,���
described by the time-dependent phase-space density,

f ðx, tÞ � hd½x� xkðtÞ	i, 22:

and let us define a weighted density

gðx, tÞ � hd½x� xkðtÞ	e�wkðtÞ=kBTi, 23:

where wk(t) is the work performed up to time t during the k-th realization. If we visualize

each trajectory xk(t) as a particle moving through many-dimensional phase space, and mk(t) ¼
exp[�wk(t)=kBT] as a fictitious, time-dependent mass that the particle carries on its journey,

then f(x, t) and g(x, t) can be interpreted as a normalized particle density and mass density,

respectively. Both are initially described by the canonical distribution, f ¼ g ¼ peqA,T , but for

t > 0 the system is no longer in equilibrium:

ft � hd½x� xkðtÞ	i 6¼ peqlðtÞ,Tðx, tÞ , t > 0: 24:
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By the simple trick of reweighting each trajectory by mk(t), however, this inequality is trans-

formed into an equality, namely (9)

gt � hd½x� xkðtÞ	e�wkðtÞ=kBTi ¼ 1

ZA,T
e�Hðx;lðtÞÞ=kBT : 25:

Note that the right side is proportional to peqlðtÞ,T and that we recover Equation 15 by setting

t ¼ t and integrating over phase space.

To sketch a derivation of Equation 25 for our toy model (Figure 1), we begin by recalling

that the ordinary density f(x, t) satisfies the Liouville equation, @f=@t þ {f,H} ¼ 0, using

Poisson bracket notation (67) and assuming that the system is isolated from the reservoir.

The left side of the Liouville equation is just the total time derivative of f(x(t), t) along a

Hamiltonian trajectory. For the weighted density g(x, t), an additional term accounts for the

time-dependent weight (7, 9):

@g

@t
þ g,Hf g ¼ � _w

kBT
g, 26:

where _w ¼ _l@H=@l. It is now a matter of substitution to show that for the initial conditions

g0 ¼ peqA,T , the right side of Equation 25 solves Equation 26. For derivations of Equation 25

(or equivalent results) in which the reservoir is modeled using stochastic and other non-

Hamiltonian dynamics, see References 7, 9, 18, 26, 32, and 59.

Equation 25 reveals the following: Even as it is driven away from equilibrium, the swarm of

trajectories retains information about the equilibrium state peqlðtÞ,T , and the key to unlocking this

information is to attach a statistical, time-dependent weight exp[�wk(t)=kBT] to each realiza-

tion. This reweighting procedure was described and illustrated by Jarzynski (7, 85), and

obtained in terms of path averages by Crooks (18); however, the elegant formulation given by

Equation 25 is due to Hummer & Szabo (9, 26), who recognized it as a consequence of the

Feynman-Kac theorem of stochastic processes. This naturally brings to mind an analogy with

the path-integral formulation of quantum mechanics, in which a wave function is constructed

as a sum over paths, each contributing a phase expðiS=ħÞ . The reweighting procedure outlined

above has a similar flavor, but with real weights exp[�wk(t)=kBT] rather than complex

phases. In the quantum-mechanical case, the sum over paths produces a solution to the

Schrödinger equation, whereas here we get the construction of an equilibrium distribution from

nonequilibrium trajectories. Hummer & Szabo (9) have used Equation 25 to derive a method of

constructing an equilibrium potential of mean force from nonequilibrium data. This method

has been confirmed experimentally by Berkovich et al. (86).

4. MACROSCOPIC HYSTERESIS AND MICROSCOPIC SYMMETRY

The second law of thermodynamics is manifested not only by inequalities such as W � DF, but
also by the time asymmetry inherent to irreversible processes. Hysteresis loops neatly depict this

asymmetry. As an example, imagine that we rapidly stretch an ordinary rubber band, then after

a sufficient pause we contract it, returning to the initial state. For this process we get a classic

hysteresis loop by plotting the tension T versus the length L of the rubber band (Figure 2).

Hysteresis conveys the idea that the state of the rubber band follows one path during the

stretching stage, but returns along a different path during contraction. The second law implies

that the enclosed area is nonnegative, rT dL � 0 .
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Similar considerations apply to the analogous stretching and contraction of single molecules

(87), only now statistical fluctuations become important: The random jigglings of the molecule

differ from one repetition of the process to the next. In the previous section we saw that when

fluctuations are taken into account, the relationship between work and free energy can be

expressed as an equality rather than the usual inequality. The central message of the present

section has a similar ring: With an appropriate accounting of fluctuations, the two branches of

an irreversible thermodynamic cycle (e.g., the stretching and contraction of the single molecule)

are described by unexpected symmetry relations (Equations 30, 31) rather than exclusively by

inherent asymmetry (Equations 28, 35).

To develop these results, it is useful to imagine two distinct processes, designated the forward

and the reverse process (8). The forward process is the one defined in Section 2, in which the

work parameter is varied from A to B using a protocol lF (t) (the subscript F has been attached

as a label). During the reverse process, l is varied from B to A using the time-reversed protocol,

lRðtÞ ¼ lFðt� tÞ: 27:

At the start of each process, the system is prepared in the appropriate equilibrium state, corre-

sponding to l ¼ A or B, at temperature T. If we perform the two processes in sequence (the

forward followed by the reverse), allowing the system to equilibrate with the reservoir at the

end of each process, then we have a thermodynamic cycle that exhibits hysteresis. The Clausius

inequality applies separately to each stage:

�hWiR 
 DF 
 hWiF, 28:

where DF is defined as before (Equation 5) and the notation now specifies separate averages

over the two processes. Of course, Equation 28 implies that the average work over the entire

cycle is nonnegative:

hWiF þ hWiR � 0: 29:

Length

Te
ns

io
n

Stre
tching

Contra
ctio

n

Figure 2

Schematic hysteresis loop for the irreversible stretching and contraction of a rubber band. During the

stretching stage, the temperature and tension of the rubber band are higher than would have been the case
if the process were performed reversibly, whereas during the contraction stage they are lower. As a result,

W > 0 over the entire cycle. The hysteresis loop illustrates the idea that the system evolves through one

sequence of states during the forward process, but follows a different path back during the reverse process.

The statistical expression of this statement is given by Equation 35.
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This illustrates the Kelvin-Planck statement of the second law: No process is possible whose

sole result is the absorption of heat from a reservoir and the conversion of all of this heat into

work (88).

Statistically, the forward and reverse processes are described by work distributions rF(W)

and rR(W). Whereas Equation 28 applies to the means of these distributions, Crooks (17) has

shown that their fluctuations satisfy

rFðþWÞ
rRð�WÞ ¼ eðW�DFÞ=kBT . 30:

As with Equation 15 (which is an immediate consequence of Equation 30), this result remains

valid even when the system is driven far from equilibrium and has been verified experimentally

(64–66, 87, 89).

Crooks’s fluctuation theorem (Equation 30) is a statement about distributions of work

values, but at its heart is a stronger result about distributions of trajectories (8):

PF½gF	
PR½gR	

¼ eðWF�DFÞ=kBT : 31:

Here, the notation gF � {xF(t);0
t
t} denotes a trajectory that might be observed during a

realization of the forward process, and gR is its conjugate twin,

xRðtÞ ¼ x�Fðt� tÞ, 32:

where x� is the microscopic state obtained by reversing all the momenta of x, as is illustrated

schematically in Figure 3. Simply put, the trajectory gR represents what we would see if we were

to film the trajectory gF, and then run the movie backward. Equation 31 then states that the

probability of observing a particular trajectory when performing the forward process ðPF½gF	Þ
relative to that of observing its conjugate twin during the reverse process ðPR½gR	Þ is given by

the right side of the equation, where WF � W[gF] is the work performed in the forward case.

To derive Equation 31 for our toy model, let us assume as before that the reservoir is

removed for 0 < t < t. The ratio of probabilities to observe the Hamiltonian trajectories gF
and gR is simply the ratio of probabilities to sample their respective initial conditions from

equilibrium (80). Thus,

p

q

xF(0) xF(τ)

x*
R(τ) x*

R(0)

γ
R

γ
F

Figure 3

A conjugate pair of trajectories, gF and gR.
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PF½gF	
PR½gR	

¼ ZB,T

ZA,T
e½HðxRð0Þ;BÞ�HðxFð0Þ;AÞ	=kBT

¼ ZB,T

ZA,T
e½HðxFðtÞ;BÞ�HðxFð0Þ;AÞ	=kBT¼ eðWF�DFÞ=kBT ,

33:

using Equations 32 and 7 to replace H(xR(0);B) by H(xF(t);B). We get to the final result

by observing that the quantity inside square brackets on the second line is the net change in

H during the forward process, which (for a thermally isolated system) is the work performed on

the system. As with the results of Section 3, numerous derivations of Equations 30 and 31 exist

in the literature, corresponding to various models of the system and reservoir (8, 17, 18, 32, 51,

53, 57, 58, 60–62, 90).

To gain some appreciation for this result, recall that a system in equilibrium satisfies micro-

scopic reversibility (91) [closely related to detailed balance (17)]: Any sequence of events is

as likely to occur as the time-reversed sequence. Using notation similar to Equation 31, this

condition can be written as

Peq½g	 ¼ Peq½g�	, 34:

where g and g� are a conjugate pair of trajectories (of some finite duration) for a system in

equilibrium. By contrast, as depicted by the two branches of a hysteresis loop, an essential

feature of thermodynamic irreversibility is that the system does not simply retrace its steps

when forced to return to its initial state. This idea is expressed statistically by the inequality

PF½gF	 6¼ PR½gR	; 35:

that is, the trajectories we are likely to observe during one process are not the conjugate twins of

those we are likely to observe during the other process. Equation 31, which replaces this

inequality with a stronger equality, can be viewed as an extension of the principle of micro-

scopic reversibility, to systems that are driven away from equilibrium by the variation of

external parameters.

5. RELATIVE ENTROPYAND DISSIPATED WORK

Information theory and thermodynamics enjoy a special relationship, evidenced most conspic-

uously by the formula,

I½ peq	 ¼ S=kB, 36:

where I½ p	 � �
R
p ln p is the information entropy associated with a statistical distribution p.

When p describes thermal equilibrium (Equation 10), its information entropy I coincides with

the thermodynamic entropy, S=kB (Equation 36). This familiar but remarkable result relates a

measure of our ignorance about a system’s microstate (I), to a physical quantity defined via

calorimetry (S).

In recent years, another set of results have emerged that, similarly, draw a connection

between information theory and thermodynamics, but these results apply to irreversible

processes rather than equilibrium states. Here the relevant information-theoretic measure is

the relative entropy (92, 93) between two distributions (Equation 37), and the physical quantity

is dissipated work, W � DF. This section describes these results in some detail, but the central

idea can be stated succinctly as follows. The irreversibility of a process can be expressed as an

inequality between a pair of probability distributions, either in trajectory space or in phase
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space (Equations 35, 40, 24). Using the relative entropy to quantify the difference between the

two distributions, we find in each case that this information-theoretic measure relates directly

to dissipated work (Equations 38, 41, 43).

For two normalized probability distributions p and q on the same space of variables, the

relative entropy [or Kullback-Leibler divergence (92)]

D½pjq	 �
Z
p ln

p

q

� �
�0 37:

quantifies the extent to which one distribution differs from the other. D ¼ 0 if and only if the

distributions are identical, and D � 1 if there is little overlap between the two distributions.

Because relative entropy provides a measure of distinguishability, it is a handy tool for

quantifying time-asymmetry. For example, recall that hysteresis can be expressed statistically

by the inequality PF½gF	 6¼ PR½gR	 (Equation 35), where the trajectory-space distributions PF

and PR represent the system’s response during the forward and reverse processes. We can then

use the relative entropyD½PFjPR	 to assign a value to the extent to which the system’s evolution

during one process differs from that during the other. From Equation 31, it follows that (80)

D½PFjPR	 ¼
Wdiss

F

kBT
, 38:

where

Wdiss
F � hWiF � DF 39:

is the average amount of work that is dissipated during the forward process. Similarly,

D½PRjPF	 ¼ Wdiss
R =kBT .

Distributions in trajectory space are abstract and difficult to visualize. However, a result

similar to Equation 38 can be placed within the more familiar setting of phase space. Let fF(x, t)

denote the time-dependent phase-space density describing the evolution of the system during

the forward process (Equation 22), and define fR(x, t) analogously for the reverse process.

Then the densities fF(x, t1) and fR(x, t � t1) are snapshots of the statistical state of the system

during the two processes, both taken at the moment the work parameter achieves the value

l1 � lF(t1) ¼ lR(t � t1). The inequality

fFðx, t1Þ 6¼ fRðx�, t� t1Þ 40:

then expresses the idea that the statistical state of the system is different when the work param-

eter passes through the value l1 during the forward process, than when it returns through the

same value during the reverse process. [The reversal of momenta in x� is related to the conjugate

pairing of trajectories (Equation 32).] Evaluating the relative entropy between these distribu-

tions, Kawai et al.(94) showed that

D½ fFj f �R	 

Wdiss

F

kBT
, 41:

where the arguments of D are the distributions appearing in Equation 40, for any choice of l1.
This becomes an equality if the system is isolated from the thermal environment as the work

parameter is varied during each process. As with Equation 38, we see that an information-

theoretic measure quantifying time-asymmetry (the left side of Equation 41) is related to a

physical measure of dissipation, Wdiss
F =kBT .

Equations 38 and 41 are closely related. The phase-space distribution fF ¼ fF(x, t1) is

the projection of the trajectory-space distribution PF½gF	 onto a single time slice, t ¼ t1,
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and similarly for f �R. Because the relative entropy between two distributions decreases when they

are projected onto a smaller set of variables (92, 94)—in this case, from trajectory space

to phase space—we have

D½ fFj f �R	 
 D½PFjPR	 ¼
Wdiss

F

kBT
: 42:

In the above discussion, relative entropy has been used to quantify the difference between the

forward and reverse processes (hysteresis). It can equally well be used to measure how far a

system lags behind equilibrium at a given instant in time, leading again to a link between

relative entropy and dissipated work (Equation 43 below).

For the process introduced in Section 2, let ft � f(x,t) denote the statistical state of the system

at time t, and let peqt � peqlðtÞ,TðxÞ be the equilibrium state corresponding to the current value of

the work parameter. It is useful to imagine that ft continually chases p
eq
t : As the work parameter

is varied with time, the state of the system (ft) tries to keep pace with the changing equilibrium

distribution ðpeqt Þ, but is unable to do so. Vaikuntanathan & Jarzynski (95) have shown that

D½ ftjpeqt 	 
 hwðtÞi � DFðtÞ
kBT

, 43:

where DF(t) � Fl(t),T � FA,T. In other words, the average work dissipated up to time t, in units

of kBT, provides an upper bound on the degree to which the system lags behind equilibrium at

that instant. This result can be obtained from either Equation 25 or Equation 41 (95). If we take

t ¼ t�, allowing the system to relax to a final state of equilibrium (see Section 2.1), then the left

side of Equation 43 vanishes and we recover the Clausius inequality.

Relative entropy is an asymmetric measure: In general D[pjq] 6¼ D[qjp]. Feng & Crooks

(96) have discussed the use of two symmetric measures of distinguishability to quantify

thermodynamic irreversibility. The first is the Jeffreys divergence, D[p jq] þ D[q jp]. When

applied to forward and reverse distributions in trajectory space, this gives the average work

over the entire cycle (see Equation 38):

JeffreysðPF;PRÞ ¼
Wdiss

F þWdiss
R

kBT
¼ hWiF þ hWiR

kBT
: 44:

The second measure is the Jensen-Shannon divergence,

JSðp; qÞ ¼ 1

2
ðD½pjm	 þD½qjm	Þ, 45:

where m ¼ (p þ q)/2 is the mean of the two distributions. When evaluated with p ¼ PF and

q ¼ PR, this leads to a more complicated, nonlinear average of Wdiss
F and Wdiss

R (see equation 7

of Reference 96). Feng and Crooks nevertheless argue that the Jensen-Shannon divergence is

the preferred measure of time asymmetry, as it has a particularly nice information-theoretic

interpretation. I return to this point at the end of the following section.

6. GUESSING THE DIRECTION OF TIME’S ARROW

Sir Arthur Eddington introduced the term “arrow of time” to describe the evident directionality

associated with the flow of events (97). While time’s arrow is familiar from daily experience—

everyone recognizes that a movie run backward looks peculiar!—Eddington (among others)

argued that it is rooted in the second law of thermodynamics. For a macroscopic system

undergoing an irreversible process of the sort described in Section 2.1, the relationship between
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the second law and the arrow of time is almost tautological:W> DFwhen events proceed in the

correct order, and W < DF when the movie is run backward, so to speak. For a microscopic

system, fluctuations blur this picture, because we can occasionally observe violations of

the Clausius inequality (Equation 5). Thus, the sign of W � DF, although correlated with

the direction of time’s arrow, does not fully determine it. These general observations can be

made precise; that is, the ability to determine the direction of time’s arrow can be quantified.

To discuss this point, it is convenient to consider a hypothetical guessing game (80). Imagine

that I show you a movie in which you observe a system undergoing a thermodynamic process as

l is varied from A to B. Your task is to guess whether this movie depicts the events in the order

in which they actually occurred, or whether I have filmed the reverse process (varying l from B

to A) and am now (deviously) showing you the movie of that process, run backward. In the

spirit of a Gedanken experiment, assume that the movie gives you full microscopic information

about the system—you can track the motion of every atom—and that you know the Hamilto-

nian function H(x;l) and the value DF ¼ FB,T � FA,T. Assume moreover that in choosing which

process to perform, I flipped a fair coin: Heads ¼ F, tails ¼ R.

We can formalize this task as an exercise in statistical inference (96). Let L(Fjg) denote

the likelihood that the movie is being shown in the correct direction (the forward process was

performed), given the microscopic trajectory g that you observe in the movie. Similarly, let

L(Rjg) denote the likelihood that the reverse process was in fact performed and the movie is now

being run backward. The likelihoods associated with the two hypotheses (F, R) sum to unity:

LðF j gÞ þ LðR j gÞ ¼ 1: 46:

Now let W denote the work performed on the system, for the trajectory depicted in the

movie. If W > DF, then the first hypothesis (F) is in agreement with the Clausius inequality and

the second hypothesis (R) is not; if W < DF, it is the other way around. Therefore for a

macroscopic system the task is easy. Formally,

LðF j gÞ ¼ yðW � DFÞ, 47:

where y(�) is the unit step function.

For a microscopic system we must allow for the possibility that Equation 5 might be violated

now and again. Bayes’ Theorem then provides the right tool for analyzing the likelihood:

LðF j gÞ ¼ Pðg j FÞPðFÞ
PðgÞ : 48:

Here P(F) is the prior probability that I carried out the forward process, which is simply 1/2

given that I flipped a fair coin to make my choice, and P(g jF) is the probability to generate the

trajectory g when performing the forward process; in the notation of Section 4, this is PF½g	 .
Finally, P(g) is (effectively) a normalization constant (see Equation 46). Writing the analogous

formula for L(R jg), then combining these with the normalization condition Equation 46 and

invoking Equation 31, we get (31, 98, 99)

LðF j gÞ ¼ 1

1þ e�ðW�DFÞ=kBT
: 49:

This result quantifies your ability to determine the arrow of time from the trajectory depicted

in the movie. The expression on the right is a smoothed step function. If the value ofW surpasses

DF by many units of kBT, then L(F j g)� 1, and you can say with high confidence that the movie

is being shown in the correct direction; in the opposite case, you can be equally confident that

the movie is being run backward. The transition from one regime to the other—where time’s
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arrow gets blurred, in essence—occurs over an interval of work values whose width is a few

kBT. What is remarkable is that this transition does not depend on the details of either the

system or the protocol l(t). Equation 49 was derived by Shirts et al. (98) and later by Maragakis

et al. (99) in the context of free-energy estimation, where the interpretation is somewhat

different from the one discussed here.

Returning to the point mentioned at the end of the previous section, the Jensen-Shannon

divergence has the following interpretation in the context of our hypothetical guessing game:

JSðPF;PRÞ is the average gain in information (regarding which process was performed)

obtained from observing the movie (96). When the processes are highly irreversible, this

approaches its maximum value, JS � ln 2, corresponding to one bit of information. This makes

sense: By watching the movie, you are able to infer with confidence whether the coin I flipped

turned up heads (F) or tails (R). Feng & Crooks (96) have argued that this interpretation has

surprisingly universal implications for biomolecular and other nanoscale machines. Namely,

approximately 4 – 8 kBTof free energy must be dissipated per operating cycle to guarantee that

the machine runs reliably in a designated direction (as opposed to taking backward and forward

steps with equal probability, as would necessarily occur under equilibrium conditions).

Finally, time’s arrow has unexpected relevance for the convergence of the exponential

average in Equation 15. Namely, the realizations that dominate that average are precisely

those “during which the system appears as though it is evolving backward in time”

(80, p. 046105–8). A detailed analysis of this assertion involves both hysteresis and relative

entropy, thus nicely tying together the four strands of discussion represented by Sections 3–6 (80).

7. ENTROPY PRODUCTION AND RELATED QUANTITIES

This review has focused on far-from-equilibrium predictions for work and free energy (Equa-

tions 15, 25, 30, 31) and how these inform our understanding of the second law of thermody-

namics. Because the second law is often taken to be synonymous with the increase of entropy,

we might well wonder how these predictions relate to statements about entropy.

As a point of departure, for macroscopic systems we can use the first law (DU¼WþQ) and

the definition of free energy (F ¼ U � ST) to write

W � DF
T

¼ DS�Q

T
¼ DStot, 50:

where DStot is the combined entropy change of the system and reservoir. If we extend this result

to microscopic systems, accepting (W � DF)/T as the definition of DStot for a single realization

of a thermodynamic process, then the results discussed in Sections 3–6 can formally be rewrit-

ten as statements about the fluctuations of entropy production.

When multiple thermal reservoirs are involved, one can generalize Equation 6 in an obvious

way by including terms for all the reservoirs, H ¼ H þ
P

kðHk
env þHk

intÞ. Working entirely

within a Hamiltonian framework, the results of Section 3, notably Equations 15, 19, and 20,

can then be written in terms of entropy production, and generalized further by dropping the

assumption that the system of interest begins in equilibrium (100). Esposito et al. (101) have

recently shown that in this situation the value of hDStoti is equal to the statistical correlation

that develops between the system and the reservoirs, as measured in terms of relative entropy.

Although the Hamiltonian framework has many advantages, it is often inconvenient for

studying irreversible processes, particularly those involving nonequilibrium steady states.

Among the many tools that have been introduced as alternatives to the Hamiltonian approach,

Gaussian thermostats—the term refers to a method of modeling nonequilibrium systems on the
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basis of Gauss’s principle of least constraint (102)—have played a prominent role in recent

developments in nonequilibrium thermodynamics. The term fluctuation theorem was originally

applied to a property of entropy production, observed in numerical investigations of a

sheared fluid simulated using a Gaussian thermostat (10–13). Because fluctuation theorems

for entropy production have been reviewed elsewhere (21, 22, 24, 29, 30, 32, 33, 35, 36),

I limit myself to a brief summary of how these results connect to those of Sections 3–6.

The transient fluctuation theorem of Evans & Searles (11) applies to a system that evolves

from an initial state of equilibrium to a nonequilibrium steady state. Letting pt(Ds) denote the

probability distribution of the entropy produced up to a time t > 0, it states that

ptðþDsÞ
ptð�DsÞ ¼ eDs=kB : 51:

This is clearly similar to Equation 30, although it pertains to a single thermodynamic process,

rather than a pair of processes (F and R). Equation 51 implies an integrated fluctuation

theorem,

he�Ds=kBi ¼ 1, 52:

that is analogous to Equation 15, and from this we in turn get analogs of Equations 19 and 20:

hDsi�0 , P½Ds < �x	 
 e�x=kB : 53:

Now consider a system that is in a nonequilibrium steady state from the distant past to the

distant future, such as a fluid under constant shear (10), and let s � Ds / t denote the entropy

production rate, time averaged over a single, randomly sampled interval of duration t. The
steady-state fluctuation theorem of Gallavotti & Cohen (12, 13) asserts that the probability

distribution pt(s) satisfies

lim
t!1

1

t
ln

ptðþsÞ
ptð�sÞ ¼

s
kB

: 54:

The integrated form of this result is (21)

lim
t!1

1

t
ln he�ts=kBit ¼ 0, 55:

where the brackets denote an average over intervals of duration t, in the steady state. Formal

manipulations then give us

hsit � 0 , lim
t!1

1

t
lnPt½s < �E	 
 �E, 56:

where Pt[s < �E] is the probability to observe a time-averaged entropy production rate less

than �E, during an interval of duration t. The resemblance between Equations 54–56, and

Equations 30, 15, 19, 20, respectively, should be obvious; although, viewed as mathematical

statements they are different.

The microscopic definition of entropy production in Equations 51–56 depends on the

equations of motion used to model the evolution of the system. In the early papers on fluctua-

tion theorems, entropy production was identified with phase-space contraction along a deter-

ministic but non-Hamiltonian trajectory (10–13). These results were then extended to

encompass stochastic dynamics, first by Kurchan (14) for diffusion, then by Lebowitz & Spohn

(15) for Markov processes in general. Maes (16) subsequently developed a unified framework

based on probability distributions of space-time histories; that is, trajectories. In all these cases,
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the validity of the fluctuation theorem ultimately traces back to the idea that trajectories come

in pairs related by time reversal, and that the production of entropy is intimately linked with the

probability of observing one trajectory relative to the other, in a manner analogous with

Equation 31.

It is intriguing to note that multiple fluctuation theorems can be valid simultaneously, in a

given physical context. This idea was mentioned in passing by Hatano & Sasa (19) in the

context of transitions between nonequilibrium states, and it has been explored in greater detail

by a number of authors since then (32, 53, 103, 104).

Finally, for nonequilibrium steady states there exist connections between entropy production

and relative entropy, analogous to those discussed in Section 5. If relative entropy is used

to quantify the difference between distributions of steady-state trajectories and their time-

reversed counterparts, then the value of this difference can be equated with the thermodynamic

production of entropy. This issue has been studied by Maes (16), Maes & Netočný (105),

and Gaspard (106).

8. CONCLUSIONS AND OUTLOOK

The central message of this review is that far-from-equilibrium fluctuations are more interesting

than one might have guessed. They tell us something new about how the second law of

thermodynamics operates at the nanoscale. In particular, they allow us to rewrite thermody-

namic inequalities as equalities, revealing that nonequilibrium fluctuations encode equilibrium

information.

The last observation has led to practical applications in two broad settings. The first is the

development of numerical methods for estimating free energy differences, an active enterprise in

computational chemistry and physics (23). Whereas traditional strategies involve equilibrium

sampling, Equations 15, 25, and 30 suggest the use of nonequilibrium simulations to construct

estimates of DF. This is an ongoing area of research (107, 108–110), but nonequilibrium

methods have gradually gained acceptance into the free energy estimation toolkit and are being

applied to a variety of molecular systems; see Reference 111 for a recent example.

Nonequilibrium work relations have also been applied to the analysis of single-molecule

experiments, as originally proposed by Hummer & Szabo (9) and pioneered in the laboratory

by Liphardt et al. (63). Individual molecules are driven away from equilibrium using optical

tweezers or atomic-force microscopy, and from measurements of the work performed on these

molecules, one can reconstruct equilibrium free energies (27, 112). For recent applications of

this approach, see References 113–116.

It remains to be seen whether the understanding of far-from-equilibrium fluctuations that

has been gained in recent years will lead to the formulation of a unified thermodynamics of

small systems; that is, a theoretical framework based on a few propositions, comparable to

classical thermodynamics. Some progress, in any case, has been made in this direction.

For stochastic dynamics, Seifert and colleagues (32, 53, 117–119)—building on earlier work

by Sekimoto (37, 120)—have developed a formalism in which microscopic analogs of all relevant

macroscopic quantities are precisely defined. Many of the results discussed in this review follow

naturally within this framework, and this has helped considerably to clarify the relations among

these results (32). Evans & Searles (22) have championed the view that fluctuation theorems are

elegantly unified in terms of a dissipation function, O, whose properties are (by construction)

independent of the dynamics used to model the system of interest. More recently, Ge & Qian

(121) have proposed a unifying framework for stochastic processes, in which both the informa-

tion entropy �
R
p lnp and the relative entropy

R
p ln ðp=qÞ play key roles.
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References 32 and 121 make a connection to earlier efforts by Oono & Paniconi (122) to

develop a steady-state thermodynamics organized around nonequilibrium steady states.

Although the original goal was a phenomenological theory, the derivation by Hatano and Sasa

of fluctuation theorems for transitions between steady states (19, 123) has encouraged a micro-

scopic approach to this problem (124, 125). In the absence of a universal statistical description

of steady states analogous to the Boltzmann-Gibbs formula (Equation 10), this has proven to be

highly challenging.

This review has focused exclusively on classical fluctuation theorems and work relations, but

the quantum case is also of considerable interest. Quantum versions of these results have been

studied for some time (126–129), and the past two to three years have seen a surge of interest in

this topic (130–139, 140, 141, 142). Quantum mechanics of course involves profound issues of

interpretation. It can be hoped that in the process of trying to specify the quantum-mechanical

definition of work (134), dealing with open quantum systems (133, 139, 140, 141, 142),

analyzing exactly solvable models (132, 135, 137, 138), or proposing and ultimately

performing experiments to test far-from-equilibrium predictions (136), important insights will

be gained. Applications of nonequilibrium work relations to the detection of quantum entan-

glement (143) and to combinatorial optimization using quantum annealing (144) have very

recently been proposed.

Finally, there has been a rekindled interest in recent years in the thermodynamics of

information-processing systems and closely related topics such as the apparent paradox of

Maxwell’s demon (145). Making use of the relations described in this review, a number

of authors have investigated how nonequilibrium fluctuations and the second law are affected

in situations involving information processing, such as occur in the context of memory erasure

and feedback control (146–150).
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29. Harris RJ, Schütz GM. 2007. J. Stat. Mech.: Theory Exp. P07020

30. Gallavotti G. 2008. Eur. Phys. J. B 64:315–20

31. Jarzynski C. 2008. Eur. Phys. J. B 64:331–40

32. Seifert U. 2008. Eur. Phys. J. B 64:423–31

33. Sevick EM, Prabhakar R, Williams SR, Searles DJ. 2008. Annu. Rev. Phys. Chem. 59:603–33

34. Evans DJ, Morriss G. 2008. Statistical Mechanics of Nonequilibrium Liquids. Cambridge, NY:

Cambridge Univ. Press. 2nd ed.

35. Esposito M, Harbola U, Mukamel S. 2009. Rev. Mod. Phys. 81:1665–702

36. Kurchan J. 2010. In Lect. Notes of the Les Houches Summer Sch.: Vol. 90, Aug. 2008, ed. T Dauxois,

S Ruffo, LF Cugliandolo, p. 67. Oxford: Oxford Univ. Press

37. Sekimoto K. 2010. Stochastic Energetics. Lect. Notes Phys., Vol. 799. Berlin: Springer

38. Boksenbojm E, Wynants B, Jarzynski C. 2010. Physica A. 389:4406–17

39. Uhlenbeck GE, Ford GW. 1963. Lectures in Statistical Mechanics, Chapter 1. Providence, RI:

Am. Math. Soc.

40. Jarzynski C. 1998. Acta Phys. Pol. B 29:1609–22

41. Jarzynski C. 2007. C. R. Phys. 8:495–506

42. Vilar JMG, Rubi JM. 2008. Phys. Rev. Lett. 100:020601

43. Peliti L. 2008. J. Stat. Mech.: Theory Exp. P05002

44. Peliti L. 2008. Phys. Rev. Lett. 101:098901

45. Vilar JMG, Rubi JM. 2008. Phys. Rev. Lett. 101:098902

46. Horowitz J, Jarzynski C. 2008. Phys. Rev. Lett. 101:098903

47. Vilar JMG, Rubi JM. 2008. Phys. Rev. Lett. 101:098904

48. Zimanyi EN, Silbey RJ. 2009. J. Chem. Phys. 130:171102

49. Jarzynski C. 2004. J. Stat. Mech.: Theory Exp. P09005

50. Sun SX. 2003. J. Chem. Phys. 118:5769–75

51. Evans DJ. 2003.Mol. Phys. 101:1551–54

52. Imparato A, Peliti L. 2005. Europhys. Lett. 70:740–46

53. Seifert U. 2005. Phys. Rev. Lett. 95:040602

54. Oberhofer H, Dellago C, Geissler PL. 2005. J. Chem. Phys. 109:6902–15

55. Cuendet MA. 2006. Phys. Rev. Lett. 96:120602

56. Cuendet MA. 2006. J. Chem. Phys. 125:144109
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